熱門搜索: 蓄熱型(EHT)地源熱泵係統 裝配式高效機房 采暖、供熱設備及通風係統 HO-RCS混凝土結構雷達 節能減排自動化係統 幹熱岩地溫監測係統 地熱管理遠程係統 地熱資源開采遠程監測係統 地熱資源回灌遠程監測係統 地熱水資源動態監測係統 分布式地溫監測係統 地源熱泵能耗監控測溫係統 TD-016C淺層地溫在線監測係統 HO-YTDCS一體式多參數分析儀 水質分析儀 DC-2500震電勘探技術承接項目合作 A30糧庫全自動三維激光掃描儀 A260棚頂固定懸掛式全自動盤煤儀

PRODUCT CLASSIFICATION

產品分類

技術文章/ Technical Articles

您的位置:首頁  /  技術文章  /  地源熱泵與風冷熱泵的技術經濟性能比較

地源熱泵與風冷熱泵的技術經濟性能比較

更新時間:2016-05-05      瀏覽次數:1710

0 前言

 

  地源熱泵( Ground Source Heat Pump) 技術是通過利用高位能, 在冬天, 把蓄存於(yu) 土壤、地表水、地下水中相對穩定的低位能量轉移到需要供熱的空間, 達到供暖的目的; 在夏天, 像常規製冷機組一樣, 將室內(nei) 的餘(yu) 熱轉移到低位熱源, 達到製冷的目的[1], [2]。冬季地源熱泵能代替鍋爐從(cong) 土壤、地下水或者地表水中取熱, 向建築物供暖; 夏季它向土壤、地下水或者地表水放熱, 給建築物降溫; 還能供應生活用水。它是一種有效利用可再生能源的方式。

 

  土壤作為(wei) 地源熱泵中的一種熱源, 具有溫度穩定、溫度範圍適宜、隨處可得和熱容較大等優(you) 點, 但作為(wei) 地源熱泵一種重要形式的土壤源熱泵也有其設備的初投資較高, 對設備的安裝調試有較高要求等問題[3]。本文對地源熱泵進行詳細的技術經濟性能分析與(yu) 運行效果驗證。

 

  1 熱泵係統的技術性能比較

 

  現以上海某空調公司的辦公樓空調係統為(wei) 例, 此辦公樓空調麵積為(wei) 520 m2, 按冷負荷指標125 W/m2 和熱負荷指標80 W/m2 估算, 其建築總冷負荷為(wei) 65 kW, 建築總熱負荷為(wei) 41.6 kW。以空氣源熱泵為(wei) 比較參照, 擬分別采用地源熱泵機組和風冷熱泵機組, 從(cong) 運行條件和技術性能方麵進行對比分析[4]。

 

  1.1 運行條件比較

 

  風冷熱泵係統可用於(yu) 采暖和空調製冷, 但機組常年暴露在室外, 其正常運行受環境的影響很大。當室外空氣溫度降低, 其供熱量減小, 特別是當空氣溫度低於(yu) - 5 ℃時, 熱泵就難以正常工作,需要用電或其他輔助熱源對空氣進行加熱, 熱泵的性能係數大大降低, 使用壽命縮短。此外, 空氣源熱泵的蒸發器上容易結霜, 需要定期除霜。這也損失相當多的能量, 一般除霜損失約占熱泵總能耗損失的10.2%。

 

  由於(yu) 地源熱泵是通過地熱換熱器與(yu) 土壤進行換熱, 且土壤的溫度穩定、溫度範圍適宜, 所以環境對其的運行工況影響極小。通過合理設計且機組間歇運行, 土壤溫度將恢複較快, 係統就能保持較高的製冷或供熱係數。地熱換熱器沒有運動元件, 埋在地下的管子經久耐用, 從(cong) 而地源熱泵使用壽命長, 均在20 年左右。另外, 地源熱泵機組緊湊, 節省空間, 維護費用低, 自動化控製程度高, 可無人值守。

 

  1.2 性能係數COP 值的比較

 

  風冷熱泵在運行時, 其運行參數受環境溫度的影響很大, 製冷量/製熱量、耗功率隨環境溫度變化的關(guan) 係如下[5]。

 

  Qx=- 0.76tx +88 ( 1)

 

  Qd=2.15td +52.2 ( 2)

 

  Nx=0.21tx +13.15 ( 3)

 

  Nd=0.25td +17.28 ( 4)

 

  式中: Qx———製冷量, kW;

 

  Qd———製熱量, kW;

 

  Nx———製冷時消耗的功率, kW;

 

  Nd———製熱時消耗的功率, kW;

 

  tx———夏季室外溫度,℃;

 

  td———冬季室外溫度,℃。

 

  根據公式( 1) ~( 4) , 利用Matlab 軟件擬合出風冷熱泵製冷、製熱工況下的COP 曲線, 如圖1與(yu) 圖2。對於(yu) 地源熱泵製冷、製熱工況下的COP曲線是根據上海某地源熱泵空調參數擬合而成,如圖3 與(yu) 圖4。

 

  在製冷工況下, 風冷熱泵在30~35 ℃運行,

 

  其COP 值在2.995~3.350; 地源熱泵在10~20 ℃之間運行, 其COP 值達到4.200~4.800。要求熱泵出水溫度為(wei) 7 ℃, 對於(yu) 上海地區夏季室外設計溫度為(wei) 35 ℃, 風冷熱泵的COP 值隻有2.995; 上海地區土壤設計溫度為(wei) 15.6 ℃, 地源熱泵對應的COP 值為(wei) 4.420。

 

  在製熱工況下, 風冷熱泵在- 4~10 ℃運行, 其COP 值在2.650~3.800; 而地源熱泵還是在10~20℃運行, 其COP 值在3.900~4.550。當要求熱泵的設計出水溫度為(wei) 50 ℃時, 冬季室外設計溫度為(wei) -4 ℃( 上海地區) , 其風冷熱泵的COP 值隻在2.650 左右; 地源熱泵的運行環境溫度雖沒變, 但由於(yu) 土壤溫度與(yu) 熱泵出水的溫差比製冷時有很大的提高。從(cong) 而地源熱泵的性能係數有一定的下降, 因此對應15.6 ℃的土壤溫度, 地源熱泵的COP 值為(wei) 4.3。

 

  由此看出, 由於(yu) 運行環境溫度不同, 分別采用

 

  風冷熱泵和地源熱泵, 性能差異很大。建築物室內(nei) 外溫差越小, 熱泵的效率越高。采用地源熱泵係統, 土壤溫度比室外空氣溫度更接近於(yu) 室內(nei) 溫度,若設計合理, 地源熱泵比風冷熱泵具有更高的效率和更好的可靠性。

 

  2 熱泵係統的經濟性能比較

 

  2.1 初投資比較

 

  地源熱泵係統與(yu) 風冷熱泵係統的區別主要在於(yu) 冷熱源部分, 室內(nei) 係統基本一致。對於(yu) 風冷熱泵係統, 冷熱源隻有室外的熱泵機組;對於(yu) 地源熱泵係統, 冷熱源除了熱泵機組, 還有地熱換熱器。基於(yu) 這一情況, 比較係統的初投資主要也就是比較冷熱源部分的費用。目前, 地下埋管係統的投資為(wei) 86.7 元/m。2 個(ge) 方案的初投資列於(yu) 表1。

 

  2.2 運行費用比較

 

  對於(yu) 上述520 m2 建築的2 種空調係統, 運行期間按每天10 h( 上午8: 00~下午6: 00) 計算, 冬夏季各按120 d 計, 機組運行係數為(wei) 0.7。就上海地區, 電價(jia) 峰值為(wei) 0.88 元每度。運行費用列於(yu) 表2。

 

  熱泵的壽命期取為(wei) 20 a, 風冷熱泵與(yu) 地源熱泵係統綜合費用列於(yu) 表3。

 

  在20 a 使用期內(nei) , 與(yu) 風冷熱泵係統相比, 地源熱泵係統在經濟方麵能節省32.4%。可見地源熱泵空調係統是一種經濟性非常好的技術。

 

  3 運行效果測試分析

 

  以上海某空調公司辦公樓地源熱泵係統為(wei) 例, 通過測試的方式分析地源熱泵運行效果。測試時間: 從(cong) 9 月10~24 日。

 

  測試內(nei) 容: ① 室外的幹濕球溫度; ②室內(nei) 幹濕球溫度與(yu) 濕度; ③地熱換熱器的進出口水的溫度, 流速, 流量; ④水泵與(yu) 地源熱泵機組的電流與(yu) 功率; ⑤送風與(yu) 回風的風速、幹濕球溫度。

 

  測試結果分析: 本次測試時間跨度2 周, 室外天氣比較炎熱, 期間隻有3 天多雲(yun) , 一天小雨。平均室外逐時溫度曲線如圖5 所示。這2 個(ge) 星期的平均室外逐時溫度高值為(wei) 32 ℃, 出現在下午的14∶00; 本辦公樓空調18∶00 停機, 此時室外溫度低為(wei) 27 ℃。

 

  圖6 是地熱換熱器的進出水的溫度分布曲線。兩(liang) 周的逐時平均出水溫度在26.5~28.5 ℃, 早晨剛開機時的出水溫度較低, 在開機後幾個(ge) 小時內(nei) 溫度一直上升, 大約在11∶30 出水溫度趨於(yu) 平緩, 在28 ℃左右。進水溫度一直在30 ℃以上, 下午達到了高點36.5 ℃。可以明顯看出, 進出水的平均溫差在4 ℃左右。從(cong) 整體(ti) 上看, 進出水的溫度高於(yu) 設計溫度。這是因為(wei) 地熱換熱器經過一個(ge) 夏季的運行, 地下埋管周圍的土壤聚集了大量的熱量沒有及時地擴散, 致使土壤溫度高於(yu) 原始溫度, 這屬正常現象。本係統能保持4 ℃左右的溫差仍符合設計要求。

 

  從(cong) 圖7 知, 室內(nei) 的濕球溫度幾乎一直都保持在23 ℃左右, 隻是在剛開機階段, 室內(nei) 的濕球溫度偏高。室內(nei) 幹球溫度保持在25~30 ℃之間, 室內(nei) 幹球溫度從(cong) 剛開機時的29 ℃降到10∶00 的26℃, 一直保持到12∶00。高幹球溫度30 ℃在室外溫度高時的14∶00 出現。14∶30 以後室內(nei) 溫度開始下降, 直至停機時的低溫度25 ℃。同時, 室內(nei) 濕度的變化也非常有規律, 從(cong) 開機時的65%降到53%, 平均室內(nei) 濕度55%。基本符合人體(ti) 熱舒適的要求。

 

  測試期間, 9 月12 日和13 日是陰天, 14 日小雨, 15 日又是陰天, 其它的天都比較炎熱。所以圖8 中2 種COP 曲線都從(cong) 12 日開始上升, 14 日地源熱泵COP 值達到大值3.38, 風冷熱泵COP值達到3.2。15 日的氣溫有所上升, 所以COP 值直線下降。由於(yu) 前4 天的氣溫相對較低, 室內(nei) 需要的冷量相對較少, 土壤的溫度得到了一定程度的恢複, 所以在接下來的幾天內(nei) 地源熱泵COP 值大約在3.22 左右。再經過四五天高溫, 地熱換熱器周圍又積聚了一定的熱量沒有擴散出去。從(cong) 而圖8 中的出水溫度也有所增加, 致使地源熱泵的COP 值都降到3.10 左右。圖8 所給出地源熱泵係統COP 值在3.10~3.38, 由圖3 知, 上海地區使用地源熱泵係統, 夏季製冷的COP 值能達到4.3。實際COP 值與(yu) 理論COP 值有一定的差值。

 

  4 結論

 

  從(cong) 環保角度看, 地源熱泵係統運行不受環境條件製約, 不會(hui) 對大氣和地下水造成汙染, 並且還能充分地利用地下熱源, 另外, 還會(hui) 產(chan) 生附加經濟效益。從(cong) 技術角度看, 地源熱泵COP 值比風冷熱泵有很大的提高, 具有很好的節能效果。從(cong) 綜合經濟性角度看, 在相同的製冷量/製熱量下, 地源熱泵比風冷熱泵初投資要大, 但運行費用很低。在整個(ge) 的運行壽命期內(nei) , 地源熱泵比風冷熱泵的綜合費用要少得多。運行測試結果表明, 一個(ge) 已經使用了4 a 的地源熱泵, 運行良好, 能滿足室內(nei) 舒適度的要求。雖然實測的COP 值比理論值小, 但還是高於(yu) 風冷熱泵的COP 值。

 

產(chan) 品谘詢請北京鴻鷗儀(yi) 器(bjhocy.com),產(chan) 品搜索:地源熱泵測溫,地埋管測溫

 

 

 

關(guan) 鍵詞:地源熱泵地埋管溫度測量係統實現實時溫度在線監測/地源熱泵換熱井實時溫度電腦監測係統/GPRS式豎直地埋管地源熱泵溫度監控係統/地源熱泵溫度場測控係統/地埋管測溫/地源熱泵溫度監控/地源熱泵測溫

遠程全自動地溫監測係統/鐵路凍土地溫監測係統/地溫監測係統/城市地溫監測自動化係統/礦井深部地溫/地源熱泵監測研究/地源熱泵溫度測量係統/淺層地熱測溫/深水測溫儀(yi) /深井測溫儀(yi) /深水測溫儀(yi) /深井測溫儀(yi)

 

推薦產(chan) 品如下:

地源熱泵溫度監控係統/地源熱泵測溫

掃碼加微信

郵箱:bjhoyq@163.com

傳(chuan) 真:010-67051434

地址:北京市朝陽區高碑店鄉(xiang) 北花園村6號(近韓國慕色攝影)

Copyright © 2025 2024美洲杯视频在线观版權所有      技術支持:

TEL:15601379746

小程序二維碼